반응형
2024학년도 대학수학능력시험 수학(기하)
시행 : 2023.11.16(목)
대상 : 고등학교 3학년
출제 : 교육과정평가원
삽화, 사진, 표는 누락되어 있습니다. 원본 파일을 참고하시기 바랍니다.
1. $\sqrt[3]{24} \times 3^{2\over3}$의 값은? [2점]
① $6$
② $7$
③ $8$
④ $9$
⑤ $10$
2. 함수 $f(x) = 2x^{3} -5x^{2} +3$에 대하여 $\displaystyle\lim_{h \to 0}\dfrac{f(2+h) -f(2)}{h}$의 값은? [2점]
① $1$
② $2$
③ $3$
④ $4$
⑤ $5$
3. $\dfrac{3}{2} \pi < \theta < 2\pi$인 $\theta$에 대하여 $\sin(-\theta) = \dfrac{1}{3}$일 때,
$\tan\theta$의 값은? [3점]
① $-\dfrac{\sqrt{2}}{2}$
② $-\dfrac{\sqrt{2}}{4}$
③ $- \dfrac{1}{4}$
④ $\dfrac{1}{4}$
⑤ $\dfrac{\sqrt{2}}{4}$
4. 함수 $f(x) =\begin{cases}3x-a&(x < 2)\\x^{2} +a&(x \ge 2)\end{cases}$가 실수 전체의 집합에서 연속일 때, 상수 $a$의 값은? [3점]
① $1$
② $2$
③ $3$
④ $4$
⑤ $5$
5. 다항함수 $f(x)$가 $$f^{\prime}(x) = 3x(x-2),\,\,\,\,f(1) = 6$$을 만족시킬 때, $f(2)$의 값은? [3점]
① $1$
② $2$
③ $3$
④ $4$
⑤ $5$
6. 등비수열 $\left\{a_{n}\right\}$의 첫째항부터 제$n$항까지의 합을 $S_{n}$이라 하자. $$S_{4} -S_{2} = 3a_{4},\,\,\,\,a_{5} = \dfrac{3}{4}$$일 때, $a_{1} +a_{2}$의 값은? [3점]
① $27$
② $24$
③ $21$
④ $18$
⑤ $15$
7. 함수 $f(x) = \dfrac{1}{3}x^{3} -2x^{2} -12x+4$가 $x = \alpha$에서 극대이고 $x = \beta$에서 극소일 때, $\beta -\alpha$의 값은? (단, $\alpha$와 $\beta$는 상수이다.) [3점]
① $-4$
② $-1$
③ $2$
④ $5$
⑤ $8$
8. 삼차함수 $f(x)$가 모든 실수 $x$에 대하여 $$xf(x) -f(x) = 3x^{4} -3x$$를 만족시킬 때, $\displaystyle\int_{- 2}^{2}f(x)dx$의 값은? [3점]
① $12$
② $16$
③ $20$
④ $24$
⑤ $28$
9. 수직선 위의 두 점 $P(\log_{5}3)$, $Q(\log_{5}12)$에 대하여 선분 $PQ$를 $m : (1-m)$으로 내분하는 점의 좌표가 $1$일 때, $4^{m}$의 값은? (단, $m$은 $0 < m< 1$인 상수이다.) [4점]
① $\dfrac{7}{6}$
② $\dfrac{4}{3}$
③ $\dfrac{3}{2}$
④ $\dfrac{5}{3}$
⑤ $\dfrac{11}{6}$
10. 시각 $t = 0$일 때 동시에 원점을 출발하여 수직선 위를 움직이는 두 점 $P$, $Q$의 시각 $t$ ($t \ge 0$)에서의 속도가 각각 $$v_{1}(t) = t^{2} - 6t+5,\,\,\,\,v_{2}(t) = 2t-7$$이다. 시각 $t$에서의 두 점 $P$, $Q$ 사이의 거리를 $f(t)$라 할 때, 함수 $f(t)$는 구간 $\left[0, a\right]$에서 증가하고, 구간 $\left[a, b\right]$에서 감소하고, 구간 $\left[b, \infty\right)$에서 증가한다. 시각 $t = a$에서 $t = b$까지 점 $Q$가 움직인 거리는? (단, $0 < a < b$) [4점]
① $\dfrac{15}{2}$
② $\dfrac{17}{2}$
③ $\dfrac{19}{2}$
④ $\dfrac{21}{2}$
⑤ $\dfrac{23}{2}$
11. 공차가 $0$이 아닌 등차수열 $\left\{a_{n}\right\}$에 대하여 $$|a_{6}|= a_{8},\,\,\,\,\displaystyle\sum_{k = 1}^{5}\dfrac{1}{a_{k}a_{k+1}}= \dfrac{5}{96}$$일 때, $\displaystyle\sum_{k = 1}^{15}a_{k}$의 값은? [4점]
① $60$
② $65$
③ $70$
④ $75$
⑤ $80$
12. 함수 $f(x) = \dfrac{1}{9} x(x-6)(x-9)$와 실수 $t$ ($0 < t < 6$)에 대하여 함수 $g(x)$는 $$g(x) =\begin{cases}f(x)&(x < t)\\-(x-t) +f(t)&(x \ge t)\end{cases}$$이다. 함수 $y = g(x)$의 그래프와 $x$축으로 둘러싸인 영역의 넓이의 최댓값은? [4점]
① $\dfrac{125}{4}$
② $\dfrac{127}{4}$
③ $\dfrac{129}{4}$
④ $\dfrac{131}{4}$
⑤ $\dfrac{133}{4}$
13. 그림과 같이 $$\overline{AB} = 3,\,\,\,\,\overline{BC} = \sqrt{13},\,\,\,\,\overline{AD}\times \overline{CD}= 9,\,\,\,\,\angle BAC = \dfrac{\pi}{3}$$인 사각형 $ABCD$가 있다. 삼각형 $ABC$의 넓이를 $S_{1}$, 삼각형 $ACD$의 넓이를 $S_{2}$라 하고, 삼각형 $ACD$의 외접원의 반지름의 길이를 $R$이라 하자. $S_{2} = \dfrac{5}{6} S_{1}$일 때, $\dfrac{R}{\sin(\angle ADC)}$의 값은? [4점]
① $\dfrac{54}{25}$
② $\dfrac{117}{50}$
③ $\dfrac{63}{25}$
④ $\dfrac{27}{10}$
⑤ $\dfrac{72}{25}$
14. 두 자연수 $a$, $b$에 대하여 함수 $f(x)$는 $$f(x) =\begin{cases}2x^{3} - 6x +1&(x \le 2)\\a(x-2)(x-b)+9&(x > 2)\end{cases}$$이다. 실수 $t$에 대하여 함수 $y = f(x)$의 그래프와 직선 $y = t$가 만나는 점의 개수를 $g(t)$라 하자. $$g(k) + \displaystyle\lim_{t \to k-}g(t) + \displaystyle\lim_{t \to k+}g(t) = 9$$를 만족시키는 실수 $k$의 개수가 $1$이 되도록 하는 두 자연수 $a$, $b$의 순서쌍 $(a, b)$에 대하여 $a+b$의 최댓값은? [4점]
① $51$
② $52$
③ $53$
④ $54$
⑤ $55$
15. 첫째항이 자연수인 수열 $\left\{a_{n}\right\}$이 모든 자연수 $n$에 대하여 $$a_{n+1} =\begin{cases}2^{a_{n}}&(\text{$a_{n}$이 홀수인 경우})\\\dfrac{1}{2}a_{n}&(\text{$a_{n}$이 짝수인 경우})\end{cases}$$를 만족시킬 때, $a_{6} +a_{7} = 3$이 되도록 하는 모든 $a_{1}$의 값의 합은? [4점]
① $139$
② $146$
③ $153$
④ $160$
⑤ $167$
16. 방정식 $3^{x - 8} =\left(\dfrac{1}{27}\right)^{x}$을 만족시키는 실수 $x$의 값을 구하시오. [3점]
17. 함수 $f(x) = (x+1)(x^{2} +3)$에 대하여 $f^{\prime}(1)$의 값을 구하시오.
18. 두 수열 $\left\{a_{n}\right\}$, $\left\{b_{n}\right\}$에 대하여 $$\displaystyle\sum_{k=1}^{10}a_{k} = \displaystyle\sum_{k=1}^{10}(2b_{k} -1),\,\,\,\,\displaystyle\sum_{k=1}^{10}(3a_{k} +b_{k}) = 33$$일 때, $\displaystyle\sum_{k=1}^{10}b_{k}$의 값을 구하시오. [3점]
19. 함수 $f(x) = \sin \dfrac{\pi}{4} x$라 할 때, $0 < x < 16$에서 부등식 $$f(2+x)f(2-x) < \dfrac{1}{4}$$을 만족시키는 모든 자연수 $x$의 값의 합을 구하시오. [3점]
20. $a >\sqrt{2}$인 실수 $a$에 대하여 함수 $f(x)$를
$f(x) = -x^{3} +ax^{2} +2x$
라 하자. 곡선 $y = f(x)$ 위의 점 $O(0, 0)$에서의 접선이 곡선 $y = f(x)$와 만나는 점 중 $O$가 아닌 점을 $A$라 하고, 곡선 $y = f(x)$ 위의 점 $A$에서의 접선이 $x$축과 만나는 점을 $B$라 하자. 점 $A$가 선분 $OB$를 지름으로 하는 원 위의 점일 때, $\overline{OA} \times \overline{AB}$의 값을 구하시오. [4점]
21. 양수 $a$에 대하여 $x \ge -1$에서 정의된 함수 $f(x)$는 $$f(x) =\begin{cases}-x^{2} +6x&(-1 \le x < 6)\\a\log_{4}(x -5)&(x \ge 6)\end{cases}$$이다. $t \ge 0$인 실수 $t$에 대하여 닫힌구간 $\left[t-1, t+1\right]$에서의 $f(x)$의 최댓값을 $g(t)$라 하자. 구간 $\left[0, \infty\right)$에서 함수 $g(t)$의 최솟값이 $5$가 되도록 하는 양수 $a$의 최솟값을 구하시오. [4점]
22. 최고차항의 계수가 $1$인 삼차함수 $f(x)$가 다음 조건을 만족시킨다.
함수 $f(x)$에 대하여 $$f(k -1)f(k +1) < 0$$을 만족시키는 정수 $k$는 존재하지 않는다.
$f^{\prime}\left(- \dfrac{1}{4}\right) = - \dfrac{1}{4}$, $f^{\prime}\left(\dfrac{1}{4}\right) < 0$일 때, $f(8)$의 값을 구하시오. [4점]
23. 좌표공간의 두 점 $A(a, -2, 6)$, $B(9, 2, b)$에 대하여 선분 $AB$의 중점의 좌표가 $(4, 0, 7)$일 때, $a + b$의 값은? [2점]
① $1$
② $3$
③ $5$
④ $7$
⑤ $9$
24. 타원 $\dfrac{x^{2}}{a^{2}}+ \dfrac{y^{2}}{6}= 1$ 위의 점 $\left(\sqrt{3}, -2\right)$에서의 접선의 기울기는? (단, $a$는 양수이다.) [3점]
① $\sqrt{3}$
② $\dfrac{\sqrt{3}}{2}$
③ $\dfrac{\sqrt{3}}{3}$
④ $\dfrac{\sqrt{3}}{4}$
⑤ $\dfrac{\sqrt{3}}{5}$
25. 두 벡터 $\overrightarrow{a}$, $\overrightarrow{b}$에 대하여 $$\left|\overrightarrow{a}\right| = \sqrt{11},\,\,\,\,\left|\overrightarrow{b}\right| = 3,\,\,\,\,\left|2\overrightarrow{a} -\overrightarrow{b}\right| = \sqrt{17}$$일 때, $\left|\overrightarrow{a} -\overrightarrow{b}\right|$의 값은? [3점]
① $\dfrac{\sqrt{2}}{2}$
② $\sqrt{2}$
③ $\dfrac{3\sqrt{2}}{2}$
④ $2\sqrt{2}$
⑤ $\dfrac{5\sqrt{2}}{2}$
26. 좌표공간에 평면 $\alpha$가 있다. 평면 $\alpha$ 위에 있지 않은 서로 다른 두 점 $A$, $B$의 평면 $\alpha$ 위로의 정사영을 각각 $A^{\prime}$, $B^{\prime}$이라 할 때, $$\overline{AB} =\overline{A^{\prime}B^{\prime}} = 6$$이다. 선분 $AB$의 중점 $M$의 평면 $\alpha$ 위로의 정사영을 $M^{\prime}$이라 할 때, $$\overline{PM^{\prime}}\, ⊥\, \overline{A^{\prime}B^{\prime}}, \,\,\,\,\overline{PM^{\prime}} = 6$$이 되도록 평면 $\alpha$ 위에 점 $P$를 잡는다. 삼각형 $A^{\prime}B^{\prime}P$의 평면 $ABP$ 위로의 정사영의 넓이가 $\dfrac{9}{2}$일 때, 선분 $PM$의 길이는? [3점]
① $12$
② $15$
③ $18$
④ $21$
⑤ $24$
27. 초점이 $F$인 포물선 $y^{2} = 8x$ 위의 한 점 $A$에서 포물선의 준선에 내린 수선의 발을 $B$라 하고, 직선 $BF$와 포물선이 만나는 두 점을 각각 $C$, $D$라 하자. $\overline{BC} =\overline{CD}$일 때, 삼각형 $ABD$의 넓이는? (단, $\overline{CF} <\overline{DF}$이고, 점 $A$는 원점이 아니다.) [3점]
① $100\sqrt{2}$
② $104\sqrt{2}$
③ $108\sqrt{2}$
④ $112\sqrt{2}$
⑤ $116\sqrt{2}$
28. 그림과 같이 서로 다른 두 평면 $\alpha$, $\beta$의 교선 위에 $\overline{AB} = 18$인 두 점 $A$, $B$가 있다. 선분 $AB$를 지름으로 하는 원 $C_{1}$이 평면 $\alpha$ 위에 있고, 선분 $AB$를 장축으로 하고 두 점 $F$, $F^{\prime}$을 초점으로 하는 타원 $C_{2}$가 평면 $\beta$ 위에 있다. 원 $C_{1}$ 위의 한 점 $P$에서 평면 $\beta$에 내린 수선의 발을 $H$라 할 때, $\overline{HF^{\prime}} <\overline{HF}$이고 $\angle HFF^{\prime}= \dfrac{\pi}{6}$이다. 직선 $HF$와 타원 $C_{2}$가 만나는 점 중 점 $H$와 가까운 점을 $Q$라 하면, $\overline{FH} <\overline{FQ}$이다. 점 $H$를 중심으로 하고 점 $Q$를 지나는 평면 $\beta$ 위의 원은 반지름의 길이가 $4$이고 직선 $AB$에 접한다. 두 평면 $\alpha$, $\beta$가 이루는 각의 크기를 $\theta$라 할 때, $\cos\theta$의 값은? (단, 점 $P$는 평면 $\beta$ 위에 있지 않다.) [4점]
① $\dfrac{2\sqrt{66}}{33}$
② $\dfrac{4\sqrt{69}}{69}$
③ $\dfrac{\sqrt{2}}{3}$
④ $\dfrac{4\sqrt{3}}{15}$
⑤ $\dfrac{2\sqrt{78}}{39}$
29. 양수 $c$에 대하여 두 점 $F(c, 0)$, $F^{\prime}(-c, 0)$을 초점으로 하고, 주축의 길이가 $6$인 쌍곡선이 있다. 이 쌍곡선 위에 다음 조건을 만족시키는 서로 다른 두 점 $P$, $Q$가 존재하도록 하는 모든 $c$의 값의 합을 구하시오. [4점]
(가) 점 $P$는 제$1$사분면 위에 있고, 점 $Q$는 직선 $PF^{\prime}$ 위에 있다.
(나) 삼각형 $PF^{\prime}F$는 이등변삼각형이다.
(다) 삼각형 $PQF$의 둘레의 길이는 $28$이다.
(나) 삼각형 $PF^{\prime}F$는 이등변삼각형이다.
(다) 삼각형 $PQF$의 둘레의 길이는 $28$이다.
30. 좌표평면에 한 변의 길이가 $4$인 정삼각형 $ABC$가 있다. 선분 $AB$를 $1 : 3$으로 내분하는 점을 $D$, 선분 $BC$를 $1 : 3$으로 내분하는 점을 $E$, 선분 $CA$를 $1 : 3$으로 내분하는 점을 $F$ 라 하자. 네 점 $P$, $Q$, $R$, $X$가 다음 조건을 만족시킨다.
(가) $\left|\overrightarrow{DP}\right|= \left|\overrightarrow{EQ}\right|= \left|\overrightarrow{FR}\right|= 1$
(나) $\overrightarrow{AX} =\overrightarrow{PB} +\overrightarrow{QC} + \overrightarrow{RA}$
(나) $\overrightarrow{AX} =\overrightarrow{PB} +\overrightarrow{QC} + \overrightarrow{RA}$
$\left|\overrightarrow{AX}\right|$의 값이 최대일 때, 삼각형 $PQR$의 넓이를 $S$라 하자. $16S^{2}$의 값을 구하시오. [4점]
'고3 > 수학' 카테고리의 다른 글
2024-03 고3 학평 수학(미적분) (0) | 2024.05.27 |
---|---|
2024-03 고3 학평 수학(확률과 통계) (0) | 2024.05.27 |
2023-11 고3 수능 수학(미적분) (0) | 2023.11.15 |
2023-11 고3 수능 수학(확률과 통계) (0) | 2023.11.15 |
2023-10 고3 학평 수학(기하) (0) | 2023.10.12 |